Устройство паяльника
Устройство паяльника
Довольно распространенным инструментом, который применяется в быту и промышленности, можно назвать электрический паяльник. Он требуется для проведения самой различной работы, что используется при ремонте электрооборудования и пайке проводов. Для того чтобы выбрать наиболее подходящий вариант исполнения рассматриваемого устройства нужно разобраться с особенности его конструкции и основными параметрами.
Типы нагревательного элемента
Любой паяльник, какой бы он не был дорогой, осуществляет пайку за счет расплавления припоя, отличаются паяльники только способом нагрева, нагревательным элементов, наличием регулирования температуры и других параметров. Далее приведена таблица, с типами нагревателей.
Тип нагревателя | Активный элемент | Теплопотери | Достоинства | Недостатки | Примерное время нагрева |
---|---|---|---|---|---|
Нихромовый | Нихромовая проволока | Высокие | Простота | Перегорание нихрома | высокая инерция |
Керамический | Нихромовая проволока в спеченной керамике | Низкие | Долговечный | Хрупок | Десятки секунд |
Индукционный | Феррит | Низкие | Долговечный | Температура регулируется | Секунды |
Высокие теплопотери обозначают, что не вся затраченная энергия передалась в жало, чем выше теплопотери, тем хуже регулировка температуры.
Наиболее распространены нихромовые нагреватели и их разновидности, за счет простоты обслуживания, невысокой цены и простой эксплуатации.
Далее по распространенности идут керамические, у них нагревательный элемент распределен равномерно по всему нагревателю, за счет чего получается высокая теплопередача и минимальные потери.
Заключают тройку лидеров индуктивные нагреватели, они работают по принципу индуктивной электроплиты — за счет магнитной индукции нагревается металл, но при определенной температуре (точка Кюри), нагрев прекращается и поддерживается постоянная температура. Следует заметить, что рабочая температура определяется материалом жала.
Термопары: устройство и принцип работы простым языком
Термопарой, или термоэлектрическим преобразователем, называют устройство для измерения температуры, основой работы которого является термоэлектрический эффект.
В бытовых целях используются в различных приборах, в самых простых и технически сложных: от утюгов, паяльников, холодильников до автомобилей и отопительных котлов. Благодаря большому диапазону измеряемых температур (от -250 о С до +2500 о С) широкое применение термопары нашли в промышленности, коммунальном хозяйстве, науке и медицине. Также термоэлектрические преобразователи работают как часть систем автоматики и управления, снимая и передавая данные об изменениях температуры. Такие датчики отличаются надежностью, невысокой стоимостью, необходимой точностью и низкой инертностью.
Работа термопары основана на свойстве изменения термо-ЭДС (термоэлектродвижущей силы) от повышения или уменьшения температуры. Точность показаний зависит от типа конструкции, соблюдения технологических требований, схемы подключения проводников.
Конструкция термоэлектрического преобразователя обусловлена тепловой инерцией и чувствительностью используемых элементов, условиями применения: диапазоном температур, агрессивностью и агрегатным состоянием среды, необходимостью использовать защиту.
Принцип работы термопары
Принцип действия термопары — термоэлектрический эффект, или эффект Зеебека. Явление это было открыто ученым в 1821 году и состоит в следующем:
в замкнутой цепи из двух разнородных проводников возникает электродвижущая сила (термо-ЭДС), если места их соединения, или спаи, поддерживать при разной температуре. Эффект не возникает в случае использования однородных материалов, а также при одинаковых температурах спаев. Величина термоэлектродвижущей силы зависит от материала проводников и разницы температур контактов, направление тока в контуре — от того, температура какого спая выше.
На практике в термопаре используют проводники из разных сплавов, они также называются термоэлектродами. Один спай, «горячий», выполняют сваркой или скручиванием и помещают в среду с измеряемой температурой; другой, «холодный», замыкается на контакты измерительного прибора или соединяется с устройством автоматического управления. В современных сложных термопарах используются цифровые преобразователи сигнала.
Термо-ЭДС возникает за счет разницы потенциалов между соединениями проводников при интенсивном нагреве или охлаждении горячего спая. Напряжение на холодном спае пропорционально зависит от температуры на горячем. При этом температура на холодном должна быть постоянной, иначе возникает большая погрешность измерений. Для высокой точности холодный контакт помещается в специальные камеры, где температура поддерживается на одном уровне.
Применение термопар и их особенности
Область применения термопар огромна, в первую очередь, благодаря широкому измерительному диапазону температур: от сверхнизких до экстремально высоких. Широкое распространение эти устройства получили также из-за стабильности и точности измерений. Их используют в бытовых и промышленных приборах, производственных технологиях для измерения температуры различных устройств, объектов и сред: воздуха, твердых тел, расплавленного металла, жидкостей и газов, вращающихся деталей, тепловых двигателей.
Как датчики температур термоэлектрические преобразователи применяют в автоматизированных системах управления. В газовом оборудовании (котлы, плиты, колонки) с помощью термопар осуществляют термоконтроль. По данным термопары срабатывает аварийное отключение приборов, если превышена допустимая температура.
От назначения термопары зависит ее конструкция и материалы проводников: различные комбинации металлов предназначены для различных сред и диапазонов температур.
Рабочие элементы для защиты от воздействия внешних факторов могут помещаться в колбу, или чехол: например, защитный материал для термопары в газовом котле — нержавеющая или обычная сталь. При температурах до 1000-1100 о С применяют жаростойкие сплавы, при более высоких — фарфор, тугоплавкие сплавы. Для измерений в особых условиях среды, к примеру, при высоком давлении, требуется герметичность термопары.
Если среда измерения не оказывает вредного влияния на проводники, защиту не используют. Бескорпусный вариант с незакрытым местом соединения двух проводников отличается низкой инертностью и практически мгновенным измерением температуры.
В зависимости от количества мест измерения термопары могут быть одноточечные и многоточечные. Соответственно, длина рабочей части термопары колеблется от 120 мм до 20000 мм. Потребность во многих точках измерения (до нескольких десятков) возникает, в частности, в химической и нефтехимической промышленности для тех емкостей, где перерабатываются жидкости (реакторов, баков, колонн фракционирования).
Классификация термопар
Принцип действия термопары основан на возникновении разности потенциалов в проводниках, поэтому металлы термоэлектродов должны отличаться по химическим и физическим характеристикам. Для применения в термопарах используются различные сплавы цветных и благородных металлов.
Благородные металлы позволяют существенно повысить точность измерений, сказывается меньшая термоэлектрическая неоднородность и стойкость к окислению. Они используются для измерений до 1900 о С, при более высоких температурах необходимы специальные жаростойкие сплавы. Неблагородные металлы применяются до 1400 о С.
Все материалы проводников обладают различной плавкостью, стойкостью к окислению, диапазоном рабочих температур. Именно в указанном производителем интервале температур возможна качественная работа устройства и точные данные измерений.
Для классификации групп термопар по российскому ГОСТу используют три кириллические буквы, международная классификация подразумевает обозначение одной буквой латиницы: например, нихросил-нисиловая термопара имеет обозначение ТНН, или N; платинородий-платинородиевая — ТПР, тип В.
Другая классификация термопар учитывает типы спаев, которые могут быть использованы:
- одноэлементные и двухэлементные;
- изолированные и соединенные с корпусом;
- заземленные и незаземленные.
Инерционность термопары снижается при заземлении на корпус, а это увеличивает быстродействие и точность измерений. Также для уменьшения инерционности в некоторых устройствах спай оставляют снаружи защитного корпуса.
Хромель+алюмель ТХА (тип K)
Существует множество типов термопар, хромель-алюмель — одна из самых распространенных.
Состав сплава хромель:
- 90% никеля
- 10% хрома
- 95% никеля
- 2% алюминия
- 2% никеля
- 1% кремния
Возможность работы с линейной характеристикой в пределах температур от -200 о С до +1300 о С, подходит для нейтральных и окислительных сред, имеет невысокую стоимость. В восстановительной среде требуется защитный корпус. Диапазон рабочих температур зависит от диаметра электродов, может применяться при реакторном облучении.
Отличается высокой чувствительностью (примерно 41 мВ/ о С) и регистрирует даже небольшие изменения температуры, очень широко применяется во многих областях.
Недостатки и особенности. Никель имеет магнитные свойства, что вызывает изменение выходного сигнала при температурах 350 о С. В серной среде возможен преждевременный отказ, при определенных низких концентрациях кислорода работа также нарушается.
Железо+константан ТЖК (Тип J)
Надежная и недорогая термопара для промышленности и науки.
Константан обычно состоит из :
Применяется в более узком диапазоне температур по сравнению с хромель-алюмелем: -200 — +1100 о С, при этом выше чувствительность: 50-60 мкВ/ о С.
Хорошо подходит для вакуумной среды, измерения проводятся также в окислительных, восстановительных, нейтральных средах. Температура длительного воздействия — до +750 о С, кратковременного — до +1100 о С.
Нельзя постоянно применять при отрицательных температурах из-за коррозии на металлическом выводе, окислительные среды сокращают срок действия. При высоких положительных температурах негативно влияет сера.
Хромель+копель ТХК (тип L).
Копель изготавливается примерно в таких пропорциях:
- медь 56%
- никель 43%
- марганец 1%.
В основном используется для пирометрических измерений различных сред при рабочих температурах 200-600 о С, в промышленных и лабораторных установках. Максимальный диапазон измеряемых температур: от -250 о С до +1100 о С при кратковременном воздействии.
Одна из самых высокочувствительных термопар — до 80 мкВ/ о С.
Чувствительна к деформации, очень хрупкая.
Преимущества и недостатки термопар
Термопары имеют давнюю историю эксплуатации и широко применяются благодаря следующим преимуществам:
- Способности работать в агрессивных средах и экстремальных температурах от -250 о С до +2500 о С.
- Невысокой цены для большинства моделей. Стоимость увеличивается для приборов с благородными металлами, защитными элементами, дополнительными соединениями и разъемами.
- Проверенной десятилетиями надежности и неприхотливости.
- Точности измерений. Погрешность составляет до 1-2 о С в стандартных приборах, что по большей части достаточно для промышленных и бытовых нужд. Более высокоточные приборы имеют показатель 0,01 о С.
- Простой технологии изготовления и обслуживания.
К недостаткам термопар можно отнести:
- необходимость применения высокочувствительных приборов для снятия результатов измерений;
- малая величина токов требует экранирующей защиты проводов для уменьшения наводки;
- ухудшение показателей при длительном использовании в условиях перепадов температур;
- для точных измерений требуется градуировка каждого прибора на заводе-изготовителе;
- появление нелинейной зависимости термо-ЭДС от нагревания, если превышаются рабочие ограничения.
В целом, возможные сложности в работе с термопарами хорошо изучены и имеют различные способы решения. Благодаря надежности, точности, широкому рабочему диапазону температур устройства очень распространены. Применение определяется их техническими характеристиками и особенностями, а для некоторых систем термопары — единственно возможный вариант. Существующая классификация, а также многочисленные исследования и опыт эксплуатации дают обширную информацию о различных типах устройств, что облегчает их выбор и использование.
Какой тип термопар выбрать
В промышленном оборудовании термопары используются крайне часто для более точного контроля этапов производства товара. В то время пока вы рассматриваете какую термопару выбрать, рекомендуем заострить свое внимание на следующих характеристиках:
- Диапазон измерения температур
- Устойчивость к химическим средам
- Стойкость к вибрации и механическим воздействиям
- Совместимость с используемым оборудованием
Как подобрать тип спая термопары
У термопар имеется три типа спая: изолированный, неизолированный или открытый.
На конце датчика с неизолированным переходом провода термопары прикреплены к стенке датчика с внутренней стороны. Благодаря этому достигается отличная теплопередача снаружи через стенку оболочки к спаю термопары. В изолированном типе спай термопары отделен от стенки оболочки. Время отклика меньше, чем у неизолированного типа, но изолированный обеспечивает изоляцию от электричества.
Термопара в стиле открытого спая выступает из конца оболочки и подвержена воздействию среды которая ее окружает. Этот тип обеспечивает лучшее время отклика, но его можно эксплуатировать только для некоррозионных и негерметичных случаев.
Неизолированный спай используют для замера температур агрессивных сред, или же для областей применения где характерно высокое давление. Спай неизолированной термопары приварен к защитной оболочке, благодаря чему достигается более быстрый отклик, чем при эксплуатации спая изолированного типа.
Изолированный спай отлично себя показывает в измерениях температур в агрессивных средах, где рекомендуется иметь термопару, которая электрически изолирована от оболочки и экранированную ею. Термопара из сварной проволоки физически изолирована от оболочки термопары порошком MgO (оксид магния).
Открытый переход рекомендуется для измерения статических или текущих температур некоррозионных газов, где понадобится быстрое время отклика. Соединение выходит за пределы защитной оболочки из металла, в следствии чего получается более точный и быстрый отклик. Изоляция оболочки герметична в соединительных местах, благодаря чему исключается любое проникновение влаги или газа, которое могло бы привести к ошибкам.
На чем остановить свой выбор
Весьма сложно ответить на вопрос какой паяльник лучше. Совсем необязательно, что тот, который дороже будет удовлетворять всем потребностям. Я бы рекомендовал совмещенную паяльную станцию, где есть и обычный электрический паяльник и термовоздушный прибор.
По сути, это тот же фен, только с более высокой температурой нагрева и точной регулировкой потока воздуха на выходе. А как мы знаем, без хорошего строительного фена уже в хозяйстве не обойтись.
Поэтому приобретая подобное устройство Вы решаете сразу несколько проблем. Можно и припаять, и нагреть, и расплавить в случае необходимости.
Если же такой необходимости нет, то приобретите обычный паяльник на 100 ватт, чего будет вполне достаточно. Чем больше мощность, а она выражается в ваттах, тем больше рабочая температура.
Несколько слов о флюсе
Для паяльных дел не обойтись без специальных химических веществ, предназначенных для удаления с поверхности провода или ножки детали оксидные пленки и дает припою равномерно растекаться по ним. Канифоль — самый дешевый и универсальный тип твердого флюса, который обязательно должен быть в арсенале у каждого радиолюбителя. Она защищает поверхность от окислов и предотвращает разъедание.
Но гораздо удобней жидкий флюс — ЛТИ 120. Он относится к нейтральным, не содержит кислот и не разъедает металл. Основой его состава является канифоль, растворенная в спирте.
Также в продаже можно найти припой в виде тонкого провода, намотанного на катушку, называется он ПОС-61.
В центре такого припоя имеется флюс, который при расплавлении паяльником сразу наносится на деталь.
Также, для надежной пайки применяют активные флюсы — паяльную кислоту. Как правило, это соляная кислота, которую после пайки необходимо нейтрализовать протиркой спиртом (или раствором соды).
Чтобы металл не корродировал после пайки, применяют и фосфорную кислоту, которая не требует нейтрализации и не вызывает коррозии.