Применение термоэлектрических явлений
В 1821 году немецкий физик Томас Иоганн Зеебек обнаружил явление которое в условиях разности температур между двумя разнородными проводниками может производить электричество.
Томас Иоганн Зеебек
Явление Зеебека основывается на эффекте что тепло, подаваемое на горячий переход, вызывает протекание электрического тока в цепи вырабатывая электрическую энергию.
Используя первый закон термодинамики (принцип сохранения энергии), разность между теплом передаваемым от высокотемпературного источника к низкотемпературному составляет выходную электрическую мощность (минус КПД, конечно).
Следует отметить, что этот энергетический цикл очень напоминает энергетический цикл теплового двигателя (двигателя Карно), поэтому в этом отношении термоэлектрический генератор энергии можно рассматривать как уникальный тепловой двигатель.
Носители заряда в материалах (электроны в металлах, электроны и дырки в полупроводниках, ионы в ионных проводниках) будут диффундировать, когда один конец проводника находится при другой температуре, чем другой.
- Горячие носители диффундируют от горячего конца к холодному концу, так как существует более низкая плотность горячих носителей на холодном конце проводника.
- Холодоносители диффундируют от холодного конца к горячему по той же причине.
Если бы проводник был оставлен для достижения равновесия, этот процесс привел бы к равномерному распределению тепла по всему проводнику. Движение тепла (в виде горячих носителей заряда) от одного конца к другому называется тепловым током. Поскольку носители заряда движутся, это создает электрический ток.
В системе, где оба конца удерживаются при постоянной температуре относительно друг друга (постоянный тепловой ток течет от одного конца к другому), происходит постоянная диффузия носителей.
Теоретическая основа
Для того чтобы разобраться, почему при прохождении электрического тока проводник нагревается, нужно знать, что по нему движутся отрицательно заряженные электроны. В процессе их перемещения они постоянно сталкиваются с микрочастицами металла, передавая им энергию и приводя их в движение.
Теплота при прохождении тока выделяется по той причине, что кинетическая энергия молекул и атомов проводника постоянно возрастает.
В результате поток электронов повышает внутреннюю энергию проводящего элемента.
Отсюда вытекают 2 следствия:
- Чем больше сопротивление, тем больше нагрев проводника. Причем это явление имеет прямо пропорциональную зависимость.
- Количество теплоты в электричестве увеличивается в зависимости от силы тока.
Если рассмотреть этот процесс с точки зрения закона сохранения энергии, то сила тока движущихся электронов, сталкивающихся с микрочастицами металла, падает.
Однако она не может исчезнуть бесследно. Идет ее превращение в тепловую энергию проводника.