Обнаружить хищение электроэнергии поможет вольтамперфазометр ВФМ-3
Обнаружить хищение электроэнергии поможет вольтамперфазометр ВФМ-3
Мониторинг уже подключенных на наш сервис счетчиков показал, что большое количество пользователей даже не подозревает, правильно ли подключены их приборы учета, и правильно ли осуществляется учет потребления. При этом вскрывались проблемы даже у ранее опломбированных приборов при их подключению к нашей системе. Как выявлять ошибки в подключении и работе приборов учета?
Мгновенные значения
На яЭнергетик можно увидеть, что счетчик подключен не правильно, если перейти во вкладку «Мгновенные значения» счетчика.
Подключив электросчетчик к системе, нажмите кнопку «Опросить». Операция опроса занимает некоторое время. На экране появится таблица данных, в которой отображены параметры электросети.
Фазное напряжение
На него стоит обращать внимание, особенно когда прибор учета подключен через трансформаторы напряжения. При этом данные отображаются уже с учетом указанного при добавлении счетчика коэффициента трансформации. Отклонения в фазных напряжениях могут свидетельствовать о:
- неисправности или некорректном подключении трансформаторов напряжения;
- неправильной схеме подключения счетчика (перепутаны клеммы на счетчике, не обжаты провода);
- неисправности самого прибора учета – об этом можно говорить, если все другие возможные причины исключены.
Токи нагрузки
Если вы знаете, что у вас симметричная нагрузка, а счетчик регистрирует искажения – повод проверить схему присоединения приборов и их состояние:
- бракованные счетчики могут не регистрировать токи по какой-либо фазе;
- в трансформаторах тока и напряжения могут произойти межвитковые замыкания, их функциональность нарушается;
- состояние соединительных кабелей: на рисунке ниже видно, что ток по фазе С отсутствовал. После осмотра и прозвона кабеля была установлена причина – не прожата клемма трансформатора тока. После устранения проблемы картинка выровнялась.
Активная мощность
Знак активной мощности показывает корректность подключения трансформаторов тока и их фазировку.
На котельной, график активной мощности которой изображен ниже, была перепутана схема подключения трансформаторов тока: контакты и фазировка. Как видно, после корректировки схемы графики приняли положительные значения, и общая регистрируемая мощность возросла на 30%.
Наиболее часто встречаются случаи, когда вторичные обмотки ТТ подключены «наоборот», бывали выявления заводского брака – все контакты подключены по схеме, но счетчик регистрирует обратное направление мощности.
Коэффициенты мощности.
В нормальном режиме работы с преобладающей активной нагрузкой значения коэффициентов мощности принимают значения 0,7 – 1,0, чаще 0,85-0,95. Если регистрируемые прибором учета коэффициенты сильно отличаются от данных значений — нужно проверять схему подключения.
На рисунке ниже показан график коэффициентов мощности объекта, где была нарушена схема подключения трансформатора тока на фазе С: как видим, значение коэффициента находилось в пределах 0,05 – 0,2.
Векторная диаграмма
Для удобства проверки правильности подключения счетчика на сервисе яЭнергетик можно увидеть векторную диаграмму. Она строится на основе последних полученных данных и отображается в таблице при опросе мгновенных значений, а так же во вкладке внизу страницы.
Здесь цветами обозначены векторы разных фаз. Чередование рассматривается по часовой стрелке, по цветам ЖЕЛТЫЙ (фаза А) — ЗЕЛЕНЫЙ (фаза В) — КРАСНЫЙ (фаза С). Фаза А всегда отображается сверху. Если векторы фаз В и С перепутаны местами, то необходимо в схеме поменять местами подключение по 2м фазам (на счетчике прямого включения — как подходящие, так и отходящие, чтобы не сбилось направление вращения подключенных после счетчика двигателей).
Если у вас возникли проблемы с настройкой, сообщите нам, и мы направим последний вариант инструкции.
Для этого необходимо заказать обратный звонок (кнопка вверху экрана) или написать на
Мы ответим на все интересующие вопросы и поможем настроить опрос ваших счетчиков.
Проверка счетчика
Важно понимать, что сделать вывод о правильности включения счетчика можно тогда, когда векторная диаграмма, снятая на его зажимах, будет полностью совпадать с нормальной.
Для того чтобы можно было правильно и качественно провести эту работу, нужно будет выполнить правильность вторичных цепей трансформатора. Естественно выполнить подобную работу, человек, у которого нет опыта в этой сфере, не сможет.
А тот, кто будет ее выполнять, должен понимать, что в сети Интернета находится большое количество формул и схем, которые готовы помочь вам в оказании данной процедуры. Ознакомившись с ними, вы сможете без особых проблем провести эту работу быстро и качественно.
Вообще нужно отметить, что проверка правильности включения счетчиков будет, состоят из двух этапов: в первую очередь нужно будет тщательным образом проверить цепь напряжения и цепи тока, провести снятие векторной диаграммы.
После этого необходимо проверить вторичную цепь трансформатора напряжения. И этому моменту необходимо уделять особо пристальное внимание, только так можно будет достичь желаемого результата.
Вы должны проверить правильность маркировки фаз. Важно также не забывать о том, что данная проверка должна в обязательном порядке проходить под рабочим напряжением, измерение тока без разрыва проверяемой цепи, и этому моменту нужно уделить как можно больше внимания.
Пример технического отчета
Построение векторных диаграмм
Наверняка при решении задач по электротехнике многие сталкивались с некоторыми сложностями в построении векторных диаграмм. Начнем с определения векторной диаграммы.
Векторная диаграмма — это изображение синусоидально изменяющихся величин в виде векторов на плоскости.
Векторные диаграммы применяют потому, что сложение и вычитание синусоидальных величин, неизбежные при расчете цепей переменного тока, наиболее просто выполняются в векторной форме. Кроме того векторные диаграммы отличаются простотой и наглядностью.
Построение векторной диаграммы выполняется в прямоугольной плоскости. Чтобы построить диаграмму нужно провести вектор длиною равный амплитудному значению искомой величины, под углом сдвига относительно другой величины. Возможно, вы не сразу поймете смысл сказанного, для этого нужно изучить пример.
В качестве примера рассмотрим построение векторной диаграммы для цепи, состоящей из последовательно подключенных конденсатора, резистора и катушки. Напряжение на катушке UL=15 В, напряжение на конденсаторе UC=20 В, напряжение на резисторе UR=10 В, ток в цепи I=3 А. Требуется найти общее напряжение.
Катушка носит индуктивный характер, а значит, в ней напряжение опережает ток по фазе на 90°.
Конденсатор носит емкостной характер, значит, ток в нем опережает по фазе напряжение на 90°.
Резистор обладает только активным сопротивлением, и напряжение в нем совпадает по фазе с током.
Итак, для начала отложим вектор тока в масштабе. Масштаб для тока у нас будет 1 А/см.
Теперь отложим вектор напряжения на катушке, масштаб для напряжения возьмем 5 В/см, получается, что нужно отложить шесть клеток вверх, так как напряжение в катушке опережает ток. Для наглядности обозначим синим цветом.
Далее мы будем откладывать вектор активного сопротивления, так как напряжение в одной фазе с током, то мы его откладываем из конца вектора UL параллельно вектору тока I. Обозначим его красным цветом.
Следующим шагом отложим вектор напряжения на конденсаторе, так как оно запаздывает на 90°, мы его отложим вертикально вниз, из конца вектора U R . Обозначим желтым цветом.
И последним этапом мы отложим вектор общего напряжения, из начала координат в конец вектора UC и обозначим его зеленым цветом.
Общее напряжение получилось равным 2,23 В, причем характер цепи емкостной, так как напряжение отстает от тока.
Когда 380, а когда 220?
Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.
Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…
Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее трехфазные двигатели), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.
Трехфазный ввод. Вводной автомат на 100 А, далее – на счетчик трехфазный прямого включения Меркурий 230.
Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.
Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.
Про выбор защитного автомата я уже писал здесь. А про выбор сечения провода – здесь. Там же – жаркие обсуждения вопросов.
Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.
Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.
Например, если дом питается от одной фазы, и потребляет мощность 15 кВт – это ток около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.
Кстати, если вас интересует кабель ВВГ-нг-ls, рекомендую обратиться на сайт xcabel.ru. Там вы найдёте самый широкий ряд различных кабелей по оптимальным ценам.
Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).
И на вводе (перед счетчиком) стоят примерно такие “ящички”:
Трехфазный ввод. Вводной автомат перед счетчиком.
Существенный минус трехфазного ввода (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.
Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?
Построение векторной диаграммы
Вращая вектор Im‘ против движения часовой стрелки, в прямоугольной системе координат построим график изменения проекции его на вертикальную ось в пределах одного оборота (одного периода). Получим известный уже график синусоидальной функции, соответствующий заданному уравнению.
При построении векторов положительные углы отсчитывают от положительного направления горизонтальной оси против вращения часовой стрелки, а отрицательные — по ее движению.
В процессе расчета электрической цепи определяется ряд синусоидальных величин. Все их можно изобразить на одном чертеже при помощи вращающихся векторов, привязав к одной паре взаимно перпендикулярных осей.
Совокупность векторов, изображающих на одном чертеже несколько синусоидальных величин одинаковой частоты в начальный момент времени, называется векторной диаграммой.
Например, напряжение и ток в электрической цепи выражаются уравнениями:
u = 125 sin(ωt + 30°)
i = 12 sin(ωt — 20°).
Векторная диаграмма такой цепи изображена на рис. 12.11. Если выбрать масштабы напряжения и тока
Векторная диаграмма содержит векторы синусоидальных величин одинаковой частоты, поэтому они вращаются с одинаковой частотой и их взаимное расположение не меняется.
Начало отсчета времени выбирают произвольно, поэтому один из векторов диаграммы можно направить произвольно; остальные же нужно располагать с учетом сдвига фаз по отношению к первому или предыдущему вектору.
Координаты векторного произведения
Так как любой вектор имеет определенные координаты в системе координат, то можно ввести второе определение векторного произведения, которое позволит находить его координаты по заданным координатам векторов.
В прямоугольной системе координат трехмерного пространства векторным произведением двух векторов a → = ( a x ; a y ; a z ) и b → = ( b x ; b y ; b z ) называют вектор c → = a → × b → = ( a y · b z — a z · b y ) · i → + ( a z · b x — a x · b z ) · j → + ( a x · b y — a y · b x ) · k → , где i → , j → , k → являются координатными векторами.
Векторное произведение можно представит как определитель квадратной матрицы третьего порядка, где первая строка есть векторы орты i → , j → , k → , вторая строка содержит координаты вектора a → , а третья – координаты вектора b → в заданной прямоугольной системе координат, данный определитель матрицы выглядит так: c → = a → × b → = i → j → k → a x a y a z b x b y b z
Разложив данный определитель по элементам первой строки, получим равенство: c → = a → × b → = i → j → k → a x a y a z b x b y b z = a y a z b y b z · i → — a x a z b x b z · j → + a x a y b x b y · k → = = a → × b → = ( a y · b z — a z · b y ) · i → + ( a z · b x — a x · b z ) · j → + ( a x · b y — a y · b x ) · k →
СНЯТИЕ ВЕКТОРНОЙ ДИАГРАММЫ (к пункту 4 «Цель работы»)
Инструкция по снятию векторных диаграмм
Инструкция по снятию векторных диаграмм Издательство: М.-Л.: Госэнергоиздат, 1952
В целях обмена опытом БТИ ОРГРЭС по поручению Технического управления МЭС выпускает серию инструкций Мосэнерго по релейной защите. Эти инструкции не являются типовыми и обязательны только для системы Мосэнерго. Публикуемая инструкция составлена инженерами М. А. Берковичем, М. Л. Голубевым, Н. В. Чернобрововым и П. К. Фейстом (участвовавшим в составлении первого выпуска инструкции), под общей редакцией Н. В. Чернобровова. Снятие векторных диаграмм токов и напряжений при проверке устройств релейной защиты и автоматики является одним из основных способов проверки правильности соединения вторичных обмоток измерительных трансформаторов и правильности подсоединения к ним реле. Снятие векторных диаграмм дает возможность: а) в дифференциальных токовых защитах определить векторы токов от каждой группы трансформаторов тока и по взаимному их расположению проверить правильность схемы соединений трансформаторов тока по фазам и по их полярности; б) в защитах, для которых необходимо обеспечить определенное сочетание фаз токов и напряжений (омметры, реле направления мощности, пусковые импедансные реле), проверить правильность включения этих реле; в) в направленных защитах проверить правильность выбора направления реле мощности путем сравнения фактического поведения реле с тем, которое должно быть при данном сочетании токов и напряжений и правильном включении реле.
Рисунок 1. Схема включения ваттметра для снятия векторной диаграммы фазовых токов. ТН – трансформатор напряжения; ТТ – трансформатор тока; V — вольтметр; Л – амперметр; W – ваттметр; ФУ – фазоуказатель.
Векторные диаграммы снимаются главным образом однофазным ваттметром. Этот способ основан на том, что для определения любого вектора на плоскости необходимо и достаточно знать по величине и направлению две его проекции на любые оси координат, расположенные в той же плоскости. Для построения искомого вектора необходимо отложить ею проекции на принятых осях координат и из их концов восстановить перпендикуляры к осям. Точка пересечения перпендикуляров будет концом искомого вектора, а центр системы координат – его началом. В практике эксплуатации релейной защиты за систему координат принимаются три фазовых или линейных напряжения симметричной трехфазной системы, равные друг другу по величине и сдвинутые между собой на угол в 120°. Все векторные диаграммы должны сниматься на симметричные токи или напряжения, принятые за оси координат. При снятии векторной диаграммы токов за оси координат могут приниматься как фазовые, так и линейные напряжения, однако для более удобного сравнения полученной диаграммы с фактическим направлением мощности в первичной цепи рекомендуется снимать диаграммы на фазовые напряжения. В сетях с заземленной нулевой точкой фазовые напряжения практически вполне симметричны. В сетях с изолированной нулевой точкой и в компенсированных сетях несимметрия фазовых напряжений может быть настолько велика, что недопустимо исказит результаты замеров. Допускается снятие векторной диаграммы на фазовые напряжения, если несимметрия их не превышает +5% от среднего значения. Если несимметрия больше, то диаграмму надо снимать на линейные напряжения, а для анализа ее нанести при построении векторы фазовых напряжений. При малых токах нагрузки целесообразно снимать диаграмму на линейные напряжения для увеличения показаний ваттметра. Если диаграмма снимается для проверки органов направления мощности или направленных омметров, то напряжение на ваттметр нужно подавать от того же трансформатора напряжения, от которого питаются проверяемые реле. Для проверки защит, не имеющих цепей напряжения, например, дифференциальных токовых, векторные диаграммы можно снимать на напряжения любою источника симметричного трехфазного напряжения, синхронного с проверяемыми токами.
Рисунок 2. Направления вектора тока при разных направлениях активной и реактивной мощности
Векторная диаграмма правильно определяет действительное положение векторов тока только в том случае, если цепи напряжения и тока имеют правильное обозначение одноименных фаз. Для правильного нанесения на векторную диаграмму векторов напряжения необходимо знать их чередование. Чередование фаз напряжения проверяется предварительно фазоуказателем. Правильность обозначения одноименных фаз тока и напряжения проверяется предварительно прозвонкой и контролируется по векторной диаграмме. Правильное соединение по полярностям обмоток реле и измерительных трансформаторов должно указываться в принципиальных и монтажных схемах защит; особенно это важно для дифференциальных и направленных защит. Необходимо отметить, что в ряде схем релейной защиты измерительные трансформаторы тока специально включаются так, чтобы повернуть один из векторов вторичною тока в реле на 180° относительно другого (например, дифференциальные защиты). При снятии векторных диаграмм в таких цепях это обстоятельство всегда следует учитывать.
Содержание
Предисловие I. Назначение векторных диаграмм II. Метод снятия векторных диаграмм III. Порядок снятия векторных диаграмм фазовых токов IV. Векторные диаграммы токов и напряжений нулевой последовательности
Сканы предоставил [email protected] (форум Советы бывалого релейщика)
Что такое векторная диаграмма токов и напряжений? Как построить график
Использование векторных диаграмм при анализе, расчете цепей переменного тока делает возможным рассмотреть более доступно и наглядно происходящие процессы, а также в некоторых случаях значительно упростить выполняемые расчеты.
Векторной диаграммой принято называть геометрическое представление изменяющихся по синусоидальному (либо косинусоидальному) закону направленных отрезков — векторов, отображающих параметры и величины действующих синусоидальных токов, напряжений либо их амплитудных величин.
Широкое применение векторные диаграммы нашли в электротехнике, теории колебаний, акустике, оптике и т.д.