Цифровые арифметические схемы
Самая основная арифметическая операция — сложение. Схема, которая выполняет сложение двух двоичных чисел, называется двоичным сумматором . Во-первых, давайте реализуем сумматор, который выполняет сложение двух битов.
Половина сумматора представляет собой комбинационную схему, которая выполняет сложение двух двоичных чисел A и B, состоящих из одного бита . Он выдает две выходные суммы, S & carry, C.
Таблица истинности Half сумматора показана ниже.
входные | Выходы | ||
---|---|---|---|
В | С | S | |
1 | 1 | ||
1 | 1 | ||
1 | 1 | 1 |
Когда мы добавляем два бита, результирующая сумма может иметь значения в диапазоне от 0 до 2 в десятичном виде. Мы можем представить десятичные цифры 0 и 1 одним битом в двоичном виде. Но мы не можем представить десятичную цифру 2 с одним битом в двоичном виде. Итак, нам требуется два бита для представления его в двоичном виде.
Пусть, sum, S — младший значащий бит и перенос, C — старший значащий бит полученной суммы. Для первых трех комбинаций входов, carry, C равен нулю, а значение S будет равно нулю или единице в зависимости от количества единиц, присутствующих на входах. Но, для последней комбинации входных данных, carry, C равен единице, а sum равен нулю, поскольку результирующая сумма равна двум.
Из таблицы Truth мы можем напрямую записать логические функции для каждого вывода как
S = A o p l u s B
Мы можем реализовать вышеуказанные функции с 2-входным вентилем Ex-OR и 2-входным вентилем AND. Принципиальная электрическая схема полумесяца показана на следующем рисунке.
В приведенной выше схеме два входных логических элемента ИЛИ-И и два входных И логических элемента И дают сумму, S и перенос, C соответственно. Следовательно, Half-сумматор выполняет сложение двух битов.
Полный сумматор
Полный сумматор представляет собой комбинационную схему, которая выполняет сложение трех битов A, B и C в . Где A & B — два параллельных значащих бита, а C in — бит переноса, который генерируется из предыдущего этапа. Этот полный сумматор также выдает две выходные суммы, S & carry, C out , которые аналогичны полумесяцу.
Таблица истинности полного сумматора показана ниже.
входные | Выходы | |||
---|---|---|---|---|
В | С в | C out | S | |
1 | 1 | |||
1 | 1 | |||
1 | 1 | 1 | ||
1 | 1 | |||
1 | 1 | 1 | ||
1 | 1 | 1 | ||
1 | 1 | 1 | 1 | 1 |
Когда мы добавляем три бита, результирующая сумма может иметь значения в диапазоне от 0 до 3 в десятичном виде. Мы можем представить десятичные цифры 0 и 1 одним битом в двоичном виде. Но мы не можем представлять десятичные цифры 2 и 3 одним битом в двоичном виде. Итак, нам требуется два бита для представления этих двух десятичных цифр в двоичном виде.
Пусть, sum, S — младший значащий бит и перенос, C out — старший значащий бит из результирующей суммы. Легко заполнить значения выходов для всех комбинаций входов в таблице истинности. Просто посчитайте количество единиц на входах и запишите эквивалентное двоичное число на выходах. Если C in равен нулю, то полная таблица истинности сумматора такая же, как в таблице истинной половины сумматора.
Мы получим следующие логические функции для каждого вывода после упрощения.
S = A o p l u s B o p l u s C i n
c o u t = A B + l e f t ( A o p l u s B r i g h t ) c i n
Сумма S равна единице, когда на входах присутствует нечетное число единиц. Мы знаем, что вентиль Ex-OR производит вывод, который является нечетной функцией. Таким образом, мы можем использовать либо два входа Ex-OR с 2 входами, либо один вентиль Ex-OR с 3 входами, чтобы получить сумму S. Мы можем реализовать перенос C , используя два вентиля И с двумя входами И и один вентиль ИЛИ. Принципиальная электрическая схема полного сумматора показана на следующем рисунке.
Так как цифры записаны в десятичной, перевод с десятичной в десятичную пропустим ?
1.1.1 Десятичная → Двоичная
Как мы знаем двоичная система счисления используется практически во всех современных компьютерах и многих других вычислительных устройствах. Система очень проста – у нас есть только 0 и 1.
Для преобразования числа с десятиной в двоичную форму нужно использовать деление по модулю 2 (т.е. целочисленное деление на 2) в результате чего мы всегда будем иметь в остатке либо 1, либо 0. При этом результат записываем справа налево. Пример все поставит на свои места:
Рисунок 1.1 – Перевод чисел из десятичной в двоичную систему
Рисунок 1.2 – Перевод чисел из десятичной в двоичную систему
Опишу деление числа 98. Мы делим 98 на 2, в результате имеем 49 и остаток 0. Далее продолжаем деление и делим 49 на 2, в результате имеем 24 с остатком 1. И таким же образом добираемся до 1-ки или 0-ка в делимом. Затем результат записываем справа налево.
1.1.2 Десятичная → Восьмеричная
Восьмеричная система – это целочисленная система счисления с основанием 8. Т.е. все числа в ней представлены диапазоном 0 – 7 и для перевода с десятичной системы нужно использовать деление по модулю 8.
Рисунок 1.3 – Перевод чисел из десятичной в восьмеричную систему
Деление аналогично 2-чной системе.
1.1.3 Десятичная → Шестнадцатеричная
Шестнадцатеричная система почти полностью вытеснила восьмеричную систему. У нее основание 16, но используются десятичные цифры от 0 до 9 + латинские буквы от A(число 10) до F(число 15). С ней вы сталкиваетесь каждый раз, когда проверяете настройки сетевого адаптера — это МАС-адрес. Так же, когда используется IPv6.
Рисунок 1.4 – Перевод чисел из десятичной в шестнадцатеричную систему