ИЗУЧЕНИЕ ЗАВИСИМОСТИ МОЩНОСТИ ИСТОЧНИКА ТОКА ОТ СОПРОТИВЛЕНИЯ НАГРУЗКИ
ИЗУЧЕНИЕ ЗАВИСИМОСТИ МОЩНОСТИ ИСТОЧНИКА ТОКА ОТ СОПРОТИВЛЕНИЯ НАГРУЗКИ
Закон Ома предназначен для того, чтобы найти неизвестную третью, если известны первая и вторая. С этого по подробней, чтобы облегчить закон Ома, будем пользоваться треугольником Ома. Вот этот треугольник:
Давайте разберёмся с напряжением, чтобы найти напряжение, используя треугольник Ома, надо закрыть рукой напряжение — U, остались только I-ток и R-сопротивление, передними стоит вертикальная черта, вертикальная это черта снизу вверх, это вертикальная линия обозначает умножение, значит, чтобы найти напряжение надо ток умножить на сопротивление.
Вот такая формула получилась: U=I*R, где U-напряжение, I-ток, R-сопротивление.
Теперь давайте попробуем найти ток, прикроем рукой I, теперь перед напряжением и сопротивление стоит горизонтальная черта, горизонтальная, это та черта, которая идёт слева направо. Горизонтальная черта означает деление. Значит, чтобы найти ток, надо напряжение разделить на сопротивление.
Формула получилась следующая: I= UR, где I-ток, U-напряжение, R-сопротивление.
Найдём сопротивление, закроем рукой R, то получим опять горизонтальную черту перед напряжением и током, значит нужно делить.
Формула получилась для расчёта сопротивления: R=UI, где R-сопротивление, U-напряжение, I-ток. Итак, мы научились пользовать треугольником Ома и узнали о Законе Ома. Теперь, пожалуй, поучимся на примерах.
Измерительными приборами
Если под руками имеются измерительные приборы, то с их помощью довольно просто найти силу тока. Необходимо лишь соблюдать правила измерений и не забывать о правилах безопасности.
Амперметром
Пользуясь приборами для измерения ампеража, следует помнить, что они подключаются в цепи последовательно. Внутреннее сопротивление амперметра очень маленькое, поэтому прибор легко выводится из строя, если проводить измерения пределами значений, для которых он рассчитан.
Схема подключения амперметра показана на рисунке 3. Обратите внимание на то, что на участке измеряемой электрической цепи обязательно должна быть нагрузка.
Рис. 3. Схема подключения амперметра
Большинство аналоговых амперметров, например, таких, как на рисунке 4, предназначены для измерений параметров в цепях с постоянными токами.
Рис. 4. Аналоговый амперметр
Обратите внимание распределение шкалы амперметра. Цена первого деления 50 А, а всех последующих – 10 А. Максимальная величина, которую можно измерить данным амперметром не должна превышать 300 А. Для измерений электрической величины в меньших либо в больших пределах следует применять соответствующие приборы, предназначенные для таких диапазонов. В этом смысле универсальность амперметра ограничена.
При измерениях постоянных токов необходимо соблюдать полярность щупов при подключении амперметра. Для подключения прибора требуется разрывать цепь. Это не всегда удобно. Иногда вычисление силы тока по формуле является предпочтительней, особенно если приходится проводить измерения в сложных электротехнических схемах.
Мультиметром
Преимущество мультиметра в том, что этот прибор многофункциональный. Современные мультиметры цифровые. У них есть режимы для измерений в цепях постоянных и переменных токов. В режиме измерения силы тока этот измерительный прибор подключается в цепь аналогично амперметру.
Перед включением мультиметра в цепь, всегда проверяйте режим измерений, а пределы измерения выбирайте заведомо большие предполагаемой силы тока. После первого измерения можно перейти в режим с меньшим диапазоном.
Для работы с переменным напряжением переводите прибор в соответствующий режим. Считывайте значения с дисплея после того, как цифры перестанут мелькать.
Виды мощностей
Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.
Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.
Основные мощностные разновидности
Активная мощность
Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.
Активная разновидность
Реактивная мощность
Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов. Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением.
Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.
Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне. Активно применяются в промышленности.
Реактивная разновидность
Полная мощность
Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.
Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.
Полная разновидность
Комплексная мощность
Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.
Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс. Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.
Комплексная разновидность
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Зависимость силы тока от напряжения. Сопротивление»
На прошлых уроках мы с вами познакомились с понятиями «сила электрического тока» и «напряжение». Давайте вспомним, что силой тока называется физическая величина, численно равная электрическому заряду, протекающему через поперечное сечение проводника за единицу времени.
Напряжение — это физическая величина, характеризующая работоспособность электрического поля.
Таким образом, сила тока и напряжение характеризуют электрический ток и его действия. Значит, сила тока должна каким-то образом зависеть от напряжения. Давайте установим эту зависимость. Для чего воспользуемся установкой, представленной на рисунке.
В качестве потребителя тока в цепи используется резистор — это металлический проводник в виде спирали. Параллельно резистору подключён вольтметр, измеряющий напряжение на этом участке цепи. Остальная часть цепи состоит из источника тока, ключа и амперметра. В качестве источника тока будем использовать устройство, которое позволяет регулировать напряжение на концах проводника.
Будем изменять напряжение на резисторе и следить за соответствующими изменениями силы тока в цепи, а все измерения заносить в таблицу:
Уже из этих данных следует, что сила тока в проводнике прямо пропорциональна напряжению на проводнике: I
Подключим теперь к источнику тока другую спираль, например, спираль осветительной лампы и повторим опыт.
Как видим, при тех же значениях напряжения, что и в первом случае, мы получили другие значения силы тока. Однако и в этом проводнике сила тока прямо пропорциональна напряжению.
Наблюдаемую нами зависимость силы тока в проводнике от напряжения между концами этого проводника можно изобразить графически. На таком графике в условно выбранном масштабе по оси абсцисс откладывается напряжение, а по оси ординат — сила тока.
Такой график в физике называют вольт-амперной характеристикой проводника.
Теперь, по результатам проведённых опытов, вычислим отношение напряжения к силе тока для каждого из измерений:
Как видим, оно постоянно для каждого из проводников, но имеет разное значение для разных проводников.
Следовательно, существует физическая величина, характеризующая свойства проводника, по которому течёт электрический ток. Эту величину называют электрическим сопротивлением проводника или просто сопротивлением. Обозначают сопротивление латинской буквой R.
За единицу сопротивления принимают ом. Она получила своё название в честь немецкого учёного Г. Ома, открывшего основной закон электрической цепи.
1 Ом — это сопротивление проводника, в котором при напряжении 1 В проходит ток силой 1 А.
Это небольшое сопротивление. У спиралей обычных электроламп оно составляет сотни ом, поэтому сопротивление часто выражают в кратных единицах:
Попытаемся теперь объяснить, почему проводник обладает электрическим сопротивлением. Вспомните, что электрический ток в металлах представляет собой направленное движение свободных электронов. Движущиеся под действием электрического поля электроны взаимодействуют с атомами и ионами кристаллической решётки металла. Следовательно, атомы и ионы препятствуют движению электронов, то есть оказывают сопротивление их движению. Это ведёт к уменьшению скорости направленного движения электронов, а значит, и силы тока в проводнике.
Электрическое сопротивление можно сравнить с трением, которое всегда препятствует движению. Как мы знаем, любое тело быстрее скатится с гладкой поверхности, чем с шершавой.
Подобно этому, электроны в плохом проводнике двигаются медленнее, чем в хорошем. В диэлектриках, электрическое сопротивление бесконечно большое, поэтому они и не проводят ток.
Таким образом, новая величина — сопротивление — отражает противодействие среды движению в ней свободных носителей заряда. В соединительных проводах это противодействие, как правило, незначительно, что позволяет сопротивлением соединительных проводов при решении большинства задач пренебречь.
Определённым сопротивлением обладают и измерительные приборы. При включении последовательно в цепь амперметра его сопротивление добавляется к полному сопротивлению цепи. Это вызывает нежелательное уменьшение силы тока. Чтобы этого не случилось, сопротивление амперметра должно быть мало́. Идеальным был бы амперметр без сопротивления. Именно таким мы и будем считать сопротивление амперметра в задачах.
Наоборот, добавление вольтметра параллельно некоторому прибору создаёт току ещё один «обходной» путь, что также резко изменяет параметры цепи. Чтобы избежать этих нежелательных последствий, надо применять вольтметры с максимально больши́м сопротивлением.
И ещё об очень важном. При слишком малом сопротивлении цепи сила тока в ней может принять недопустимо большое значение. При замыкании цепи, представленной на рисунке, ток в ней пройдёт, фактически не испытывая сопротивления. Это — короткое замыкание.
В таком режиме могут быть испорчены и прибор, и источник тока, а перегрев проводов может привести к пожару.
Пример решения задачи.
Задача. Когда напряжение увеличили на 3 В, сила тока в цепи возросла вдвое, и ток за 1 с совершил работу 3 Дж. Найдите значения силы тока после увеличения напряжения.
- Печать
Взаимная связь электрических и магнитных полей была установлена выдающимся английским физиком М. Фарадеем в 1831 г. Он открыл явление электромагнитной индукции. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.
Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом контуре при изменении магнитного потока, пронизывающего контур.
Магнитным потоком Φ через площадь S контура называют величину Ф = BScosα
где B – модуль вектора магнитной индукции, α – угол между вектором B и нормалью n к плоскости контура.
Явление электромагнитной индукции Фарадей исследовал с помощью двух изолированных друг от друга проволочных спиралей, намотанных на деревянную катушку. Одна спираль была присоединена к гальванической батарее, а другая — к гальванометру, регистрирующему слабые токи. В моменты замыкания и размыкания цепи первой спирали стрелка гальванометра в цепи второй спирали отклонялась.
Опыты Фарадея.
Опыты Фарадея по исследованию ЭМИ можно разделить на две серии:
Объяснение опыта: При внесении магнита в катушку, соединенную с амперметром в цепи возникает индукционный ток. При удалении так же возникает индукционный ток, но другого направления. Видно, что индукционный ток зависит от направления движения магнита, и каким полюсом он вносится. Сила тока зависит от скорости движения магнита.
Объяснение опыта: электрический ток в катушке 2 возникает в моменты замыкания и размыкания ключа в цепи катушки 1. Видно, что направление тока зависит от того, замыкаюи или размыкают цепь катушки 1, т.е. от того, увеличивается (при замыкании цепи) или уменьшаетя (при размыкании цепи) магнитный поток. пронизывающий 1-ю катушку.
Проводя многочисленные опыты Фарадей установил, что в замкнутых проводящих контурах электрический ток возникает лишь в тех случаях, когда они находятся в переменном магнитном поле, независимо от того, каким способом достигается изменение потока индукции магнитного поля во времени.
Ток, возникающий при явлении электромагнитной индукции, называют индукционным.
Строго говоря, при движении контура в магнитном поле генерируется не определенный ток (который зависит от сопротивления), а определенная э. д. с.
Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции Eинд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:
Эта формула выражает закон Фарадея: э. д. с. индукции равна скорости изменения магнитного потока через поверхность, ограниченную контуром.
Знак минус в формуле отражает правило Ленца.
В 1833 году Ленц опытным путем доказал утверждение, которое называется правилом Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.
При возрастании магнитного потока Ф>0, а εинд < 0, т.е. э. д. с. индукции вызывает ток такого направления, при котором его магнитное поле уменьшает магнитный поток через контур.
При уменьшении магнитного потока Ф<0, а εинд > 0, т.е. магнитное поле индукционного тока увеличивает убывающий магнитный поток через контур.
Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии: если магнитное поле через контур увеличивается, то ток в контуре направлен так, что его магнитное поле направлено против внешнего, а если внешнее магнитное поле через контур уменьшается, то ток направлен так, что его магнитное поле поддерживает это убывающее магнитное поле.
ЭДС индукции зависит от разных причин. Если вдвигать в катушку один раз сильный магнит, а в другой — слабый, то показания прибора в первом случае будут более высокими. Они будут более высокими и в том случае, когда магнит движется быстро. В каждом из проведённых в этой работе опыте направление индукционного тока определяется правилом Ленца. Порядок определения направления индукционного тока показан на рисунке.
На рисунке синим цветом обозначены силовые линии магнитного поля постоянного магнита и линии магнитного поля индукционного тока. Силовые линии магнитного поля всегда направлены от N к S – от северного полюса к южному полюсу магнита.
По правилу Ленца индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока. Поэтому в катушке направление силовых линий магнитного поля противоположно силовым линиям постоянного магнита, ведь магнит движется в сторону катушки. Направление тока находим по правилу буравчика: если буравчик (с правой нарезкой) ввинчивать так, чтобы его поступательное движение совпало с направлением линий индукции в катушке, тогда направление вращения рукоятки буравчика совпадает с направлением индукционного тока.
Поэтому ток через миллиамперметр течёт слева направо, как показано на рисунке красной стрелкой. В случае, когда магнит отодвигается от катушки, силовые линии магнитного поля индукционного тока будут совпадать по направлению с силовыми линиями постоянного магнита, и ток будет течь справа налево.
Изменение магнитного потока , пронизывающего замкнутый контур, может происходить по двум причинам.
1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках.. Электродвижущая сила в цепи — это результат действия сторонних сил, т.е. сил неэлектрического происхождения. Сила Лоренца играет в этом случае роль сторонней силы, под действием которой происходит разделение зарядов, в результате чего на концах проводника появляется разность потенциалов.
Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле В, перпендикулярное плоскости контура. Пусть одна из сторон контура длиной l скользит со скоростью v по двум другим сторонам.
На свободные заряды на этом участке контура действует сила Лоренца. Составляющая силы Лоренца, действующая на свободный электрон, связанная с переносной скоростью v зарядов, направлена вдоль проводника. Эта составляющая указана на рис. 3. Это она играет роль сторонней силы. Ее модуль равен FЛ = eυB
Э. д. с. индукции в проводнике характеризует работу по перемещению единичного положительного заряда вдоль проводника.
Работа силы FЛ на пути l равна A = FЛ · l = eυBl
По определению ЭДС
В других неподвижных частях контура сторонняя сила равна нулю. Соотношению для инд можно придать привычный вид. За времы Δt площадь контура изменяется на ΔS = lυΔt. Изменение магнитного потока за это время равно ΔΦ = BlυΔt. Следовательно,
Если сопротивление всей цепи равно R, то по ней будет протекать индукционный ток, равный
Iинд = инд/R.
За время Δt на сопротивлении R выделится джоулево тепло
Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы Ампера FA . Для случая, изображенного на рис. 3, модуль силы Ампера равен FA = IBl. Сила Ампера направлена навстречу движения проводника; поэтому она совершает отрицательную механическую работу. За время Δt эта работа Aмех равна
Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.
Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.
При движении проводника вправо свободные электроны, содержащиеся в нем, будут двигаться также вправо, т. е. возникает конвекционный ток. Направление этого тока обратно направлению движения электронов.
На каждый движущийся электрон со стороны магнитного поля действует сила Лоренца Fл. Заряд электрона — отрицательный. Поэтому сила Лоренца направлена вниз.
Под действием этой силы электроны будут двигаться вниз, поэтому в нижней части проводника l накапливаются отрицательные заряды, а в верхней — положительные. Образуется разность потенциалов φ1 — φ2, в проводнике возникает электрическое поле напряженностью Е, которое препятствует дальнейшему перемещению электронов.
В момент, когда сила Fэл = еЕ, действующая на заряды со стороны этого электрического поля, станет равной по модулю силе Fл = evBsinα, действующей на заряды со стороны магнитного поля, т.е. при еЕ = evBsinα или Е = vBsinα , заряды перестанут перемещаться.
Напряженность электрического поля Е в движущемся проводнике длиной l и разность потенциалов φ1 — φ2 связаны между собой соотношением
Если такой проводник замкнуть, то по цепи пойдет ток. Таким образом, на концах проводника индуцируется э.д. с.
2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре . В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не является потенциальным. Его называют вихревым электрическим полем . Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом (1861 г.).
Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.
Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.
Явление электромагнитной индукции лежит в основе действия электрических генераторов. Если равномерно вращать проволочную рамку в однородном магнитном поле, то возникает индуцированный ток, периодически изменяющий свое направление. Даже одиночная рамка, вращающаяся в однородном магнитном поле, представляет собой генератор переменного тока. Более сложные генераторы обычно являются улучшенными вариантами такого устройства.
Вольт-амперная характеристика
С её помощью можно узнать, как изменяется ток при увеличении или уменьшении напряжения в цепи. Если её строить для проводника, зависимость будет линейной. Это можно понять из закона Ома, в соответствии с которым сила пропорциональна приложенной разности потенциалов. Такого вида график характерен для металлов. Но в то же время для полупроводников он не будет линейным.
Всё дело в том, что такие материалы обладают особыми свойствами. В них может наступать пробой — явление, при котором происходит резкое возрастание силы тока и процесс насыщения. В последнем случае значение электротока практически не изменяется при росте напряжения.
График зависимости строят в декартовой системе координат. По оси X откладывают напряжение, а Y — ток. Исследовать характеристику для любого элемента цепи можно и самостоятельно. Для этого потребуется подготовить:
- регулируемый блок питания;
- амперметр;
- вольтметр;
- исследуемый элемент.
Схема собирается довольно просто. К блоку питания подключают измеритель тока (амперметр), к выходу которого подсоединяют одним выводом проводник. Второй полюс соединяют со свободным контактом источника напряжения. Измеритель напряжения включают параллельно исследуемому элементу.
Эксперимент заключается в следующем. С помощью блока питания изменяют напряжение, величина которого снимается с вольтметра. Одновременно списывают данные с амперметра. Затем рисуют координатные оси ВАХ, на которых откладывают точки соответствующих величин и соединяют их плавной линией. Нарисованная кривая или прямая и будет отображать реальную картину зависимости тока от напряжения для элемента. По ВАХ можно построить график зависимости мощности от силы тока. Для этого необходимо выполнить расчёт по формуле: P = I*U.
На практике часто приходится иметь дело с переменным током. Это явление, при котором его сила изменяется с течением времени. В этом случае не используют ВАХ, так как изменение U происходит по определённому закону, чаще всего синусоидальному, поэтому, если нужно построить график зависимости напряжения от времени, необходимо знать формулу, с помощью которой описывается функция.
Формулировка и объяснение закона Ома
Закон немецкого учителя Георга Ома очень прост. Он гласит:
Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.
Георг Ом вывел этот закон экспериментально (эмпирически) в 1826 году. Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря «участок цепи» мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.
Если рассматривать закон Ома для полной цепи, формулировка его будет немного иной.
Пусть у нас есть цепь, в ней есть источник тока, создающий напряжение, и какое-то сопротивление.
Закон запишется в следующем виде:
Объяснение закона Ома для полой цепи принципиально не отличается от объяснения для участка цепи. Как видим, сопротивление складывается из собственно сопротивления и внутреннего сопротивления источника тока, а вместо напряжения в формуле фигурирует электродвижущая сила источника.
Кстати, о том, что такое что такое ЭДС, читайте в нашей отдельной статье.
Катушка в цепи переменного тока
Теперь подключим к нашему источнику переменного напряжения катушку индуктивности (рис. 5 ). Активное сопротивление катушки считается равным нулю.
Рис. 5. Катушка в цепи переменного тока
Казалось бы, при нулевом активном (или, как ещё говорят, омическом) сопротивлении через катушку должен потечь бесконечный ток. Однако катушка оказывает переменному току сопротивление иного рода.
Магнитное поле тока, меняющееся во времени, порождает в катушке вихревое электрическое поле , которое, оказывается, в точности уравновешивает кулоновское поле движущихся зарядов:
Работа кулоновского поля по перемещению единичного положительного заряда по внешней цепи в положительном направлении — это как раз напряжение . Аналогичная работа вихревого поля — это ЭДС индукции .
Поэтому из (4) получаем:
Равенство (5) можно объяснить и с энергетической точки зрения. Допустим, что оно не выполняется. Тогда при перемещении заряда по цепи совершается ненулевая работа, которая должна превращаться в тепло. Но тепловая мощность равна нулю при нулевом омическом сопротивлении цепи. Возникшее противоречие показывает, что равенство (5) обязано выполняться.
Вспоминая закон Фарадея , переписываем соотношение (5) :
Остаётся выяснить, какую функцию, меняющуюся по гармоническому закону, надо продифференцировать, чтобы получить правую часть выражения (6) . Сообразить это нетрудно (продифференцируйте и проверьте!):
Мы получили выражение для силы тока через катушку. Графики тока и напряжения представлены на рис. 6 .
Рис. 6. Ток через катушку отстаёт по фазе от напряжения на
Как видим, сила тока достигает каждого своего максимума на четверть периода позже, чем напряжение. Это означает, что сила тока отстаёт по фазе от напряжения на .
Определить сдвиг фаз можно и с помощью формулы приведения:
Непосредственно видим, что фаза силы тока меньше фазы напряжения на .
Амплитуда силы тока через катушку равна:
Это можно записать в виде, аналогичном закону Ома:
Величина называется индуктивным сопротивлением катушки. Это и есть то самое сопротивление, которое наша катушка оказывает переменному току (при нулевом омическом сопротивлении).
Индуктивное сопротивление катушки пропорционально её индуктивности и частоте колебаний. Обсудим физический смысл этой зависимости.
1. Чем больше индуктивность катушки, тем большая в ней возникает ЭДС индукции, противодействующая нарастанию тока; тем меньшего амплитудного значения достигнет сила тока. Это и означает, что будет больше.
2. Чем больше частота, тем быстрее меняется ток, тем больше скорость изменения магнитного поля в катушке, и тем большая возникает в ней ЭДС индукции, препятствующая возрастанию тока. При имеем , т. е. высокочастотный ток практически не проходит через катушку.
Наоборот, при имеем . Для постоянного тока катушка является коротким замыканием цепи.
И снова мы видим, что закону Ома подчиняются лишь амплитудные, но не мгновенные значения тока и напряжения. Причина та же — наличие сдвига фаз.
Резистор, конденсатор и катушка, рассмотренные пока что по отдельности, теперь соберутся вместе в колебательный контур, подключённый к источнику переменного напряжения. Читайте следующий листок — «Переменный ток. 2».