Диоды Шоттки: описание, принцип работы, схема, основные параметры, применение, характеристики
В конце 30-х годов XX века немецкий физик Вальтер Шоттки обнаружил, что внешнее электрическое поле заставляет свободные электроны покидать зону проводимости и в буквальном смысле выходить из твёрдого тела. Данная квантовая зависимость впоследствии была названа именем её первооткрывателя и теперь известна, как эффект Шоттки.
Несмотря на то, что открытие германского учёного относится к области теоретической физики, оно находит применение в практической радиотехнике и лежит в основе функциональности таких радиокомпонентов, как диоды Шоттки. Их отличие от обычных электрических вентилей заключается в отсутствии классического полупроводникового p-n-перехода. Его роль играет контакт между полупроводником и металлом.
Металл и полупроводник: особенности контакта.
В контактной области полупроводниковых и металлических материалов эффект Шоттки приводит к образованию в полупроводнике слоя, сильно обеднённого электронами. Он обладает вентильными свойствами, присущими полупроводниковому p-n-переходу. Эта зона представляет собой преграду для носителей заряда, поэтому данные радиокомпоненты часто называют диодами с барьером Шоттки.
Элементы отличаются от обычных полупроводниковых вентилей следующими качествами:
- пониженное падение напряжения при прямом смещении;
- незначительная собственная ёмкость;
- малый обратный ток;
- низкое допустимое обратное напряжение.
Хорошие частотные характеристики диодов Шоттки обусловлены отсутствием в переходной зоне неосновных носителей заряда. Из-за этого в контактной области не протекают обычные для чисто полупроводникового p-n-перехода процессы диффузии и рекомбинации дырок и электронов. Следовательно, собственная ёмкость этого слоя стремится к нулю. Данное свойство делает диоды с барьером Шоттки предпочтительными для использования в высоко- и сверхвысокочастотных схемах, а также аппаратуре с импульсными режимами работы – всевозможных цифровых устройствах, системах управления электроникой и импульсных блоках питания.
Низковольтные диоды.
Особенность диодов Шоттки состоит в том, что они являются низковольтными. Если приложенная разность потенциалов превышает некоторый допустимый уровень, то в соответствии с квантовыми законами происходит пробой, который в обычном полупроводниковом радиокомпоненте может быть туннельным, лавинным или тепловым. После первых двух диод восстанавливается и продолжает исправно работать. Тепловой пробой означает фатальную поломку.
В диодах с барьером Шоттки пробой всегда бывает только тепловым. Такова особенность металло-полупроводникового перехода. При большом обратном смещении элемент выходит из строя и нуждается в замене. Этим, кстати, объясняется сильная чувствительность диодов Шоттки к статическому электричеству – при их монтаже и обслуживании радиоаппаратуры с этими элементами необходимо заземлять спецодежду и инструменты.
Однако чувствительность этих радиокомпонентов не всегда является их недостатком. Например, благодаря этой характеристике диоды с барьером Шоттки используются в особо чувствительных гетеродинах, которые получают способность обрабатывать радиосигналы очень малой мощности.
Основные параметры.
- Максимальное постоянное обратное напряжение;
- Максимальное импульсное обратное напряжение;
- Максимальный (средний) прямой ток;
- Максимальный импульсный прямой ток;
- Постоянное прямое напряжение на диоде при заданном прямом токе через него;
- Обратный ток диода при предельном обратном напряжении;
- Максимальная рабочая частота диода;
- Время обратного восстановления;
- Общая емкость диода.
Производство диодов Шоттки.
В качестве полупроводниковой составляющей используются стандартные материалы – кремний, германий и арсенид галлия. На них в процессе изготовления радиокомпонентов напыляются такие металлы, как золото, серебро, палладий, вольфрам. Именно эти элементы таблицы Менделеева обеспечивают достаточно высокий потенциальный барьер, определяющий функциональность диодов Шоттки.
Германиевые радиокомпоненты показывают высокую устойчивость к изменению температурного режима, поэтому данный материал чаще кремния и арсенида галлия используется при производстве диодов для мощных схем питания. Зато кремниевые и галлиевые элементы демонстрируют лучшие частотные параметры.
Общая характеристика и принцип работы
Выпрямительные диоды способны замыкать и размыкать цепи, а также коммутировать электрические сигналы. Их принцип работы основан на определенных особенностях p-n перехода. Суть заключается в том, что у каждого диода есть два вывода или электрода. Один из них — анод, а второй — катод. Анод соединен с p-слоем, а катод примыкает к n-слою.
Между p- и n-слоем имеется небольшая область без подвижных носителей заряда, обладающая высоким электрическим сопротивлением. Она называется запирающим слоем и определяет потенциальный барьер.
Когда на p-n переход поступает внешнее напряжение, создающее электрополе, направленное противоположно полю запирающего слоя, то данный слой начинается уменьшаться по толщине. Окончательно он исчезает при напряжении 0.4–0.6 Вольт. При этом существенно возрастает ток, который называется прямым.
Подача внешнего питания другой полярности приводит к увеличению запирающего слоя и возрастанию сопротивления p-n перехода. В этом случае ток создается неосновными носителями заряда. Он будет иметь незначительную величину даже при сравнительно большом напряжении.
Следовательно, прямой ток создается основными носителями заряда, а обратный — неосновными. Диоды-выпрямители пропускают прямой (положительный) электроток по направлению от анода к катоду.
Как работает выпрямительный диод проще всего объяснить, используя схему простого однополупериодного выпрямителя.
Диодный однополупериодный выпрямитель на протяжении положительного полупериода пребывает в открытом положении, поэтому ток проходит через него и поступает на нагрузку. Во время отрицательного полупериода диод запирается, и напряжение не поступает на нагрузку. В результате на выход поступают импульсы, которые состоят только из положительных полупериодов и называются постоянным током.
Светодиод состоит из нескольких частей:
- анод, по которому подается положительная полуволна на кристалл;
- катод, по которому подается отрицательная полуволна на кристалл;
- отражатель;
- кристалл полупроводника;
- рассеиватель.
Эти элементы есть в любом светодиоде, вне зависимости от его модели.
Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.
Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.
Цвета светодиодов
Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.
Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.
RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.
Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.
Работа диода и его вольт амперная характеристика
По конструкции диод является кристаллом с двумя областями, обладающими различной проводимостью (p и n). Область с p-проводимостью анод (+), с n-проводимостью – катод (-). В аноде заряд в дырках, в катоде – в электронах. Кристалл покрыт металлом с выводами.
Строение определяет 2 положения:
- открытое;
- закрытое.
В открытом положении проводимость электротока хорошая, в закрытом – очень плохая.
Вольт-амперной характеристикой называется график. На вертикальной оси отражается основной и противоположный ток, на горизонтальной – основной и противоположный вольтаж.
Прямой электроток повышается быстро параллельно увеличению вольтажа. Противоположный ток увеличивается медленнее.
При слишком большом прямом электротоке молекулы кристалла нагреваются. Если нет системы охлаждения, существует вероятность разрушения кристаллической решетки. В схемах прямой поток ограничивается резистором, подключенным последовательно.
Справка! От электротока прямое напряжение не зависит. Для кремневых полупроводников оно не превышает 1,5 В, для изделий из германия – 1 В.
Как различить светодиоды 3 Вт и 1 Вт
При включении чипов на полную мощность Вы вряд ли сможете отличить 1 Вт и 3 Вт по свету. Глаз не воспримет слишком яркое свечение.
Можно использовать черную коробку, по отдельности включать светодиоды и смотреть, какой образец даст больший световой эффект. Вместо коробки можно использовать черный лист. Это пример, но смысл понятен, думаю.
Если у Вас есть два диода, не понятного происхождения, то определить какой из них 3 Вт, а какой 1 Вт можно следующим способом: подключаем оба к источнику питания и подаем на них 3,5 В. При этом начальное значение тока должны быть в пределах 350мА. Посмотрим на графическую зависимость яркости от тока.
При увеличении начального напряжения в 3,5 В яркость 1 Вт диода еще немного увеличится и практически остановится, если дальше повышать напряжение (ток). В случае, если у Вас 3 Вт диод, то при увеличении напряжения от 3,5 В ток будет расти, а согласно графику, приведенному выше, мы видим, что яркость будет постепенно увеличиваться до момента, пока ток не достигнет 700 мА.
Т.е. визуально мы можем определить любой светодиод 1 Вт или 3 Вт если подав на него ток 350 мА будем постепенно увеличивать его. Увеличение яркости от 350 мА говорит о том, что перед нами 3 Вт диод. Незначительное увеличение яркости от 350 до 700 мА говорит о том, что перед нами 1 Вт диод.
Другой способ определить где 3 Вт или 1 Вт мощный светодиод — нагрев. Здесь простая физика. При тех же 350 мА 1 Вт светодиод будет нагреваться быстро. И в руке его держать Вы не сможете. 3 Вт же светодиод при том же токе можно достаточно долго держать в руке без заметных неприятных ощущений. Естественно, что это побочный способ определения где какой диод. Но имеет право на существование.
Ну и последний способ — отличить светодиоды по размеру кристалла. Чтобы наверняка это делать, стоит приобрести USB микроскоп. Это бюджетный вариант и достаточно качественный, с необходимыми гаджетами. Здесь можно посмотреть много микроскопов различной ценовой категории. Вообще USB микроскоп интересная штуковина и пригодится дома не один раз. Далее используя калибровочную линейку и предустановленную программу можно легко замерить размеры кристалла. С ним мы точно можем сказать, какой размер кристалла установлен. Однако и этот способ не даст нам точного понятия где какой диод. Но беря во внимание, что чем больше кристалл, тем больше мощность — соответственно можно сделать вывод для себя.
Мощные диоды 1 Вт имеют размеры 30х30mil. Кристаллы в 3 Вт диодах — 45х45mil. Это, конечно идеальные размеры.
Если у Вас нет микроскопа, а хочется узнать размеры, то можно воспользоваться подручными средствами. Подадим на светодиоды очень маленький ток. Кристаллы начнут еле-еле светиться.
Свечение кристаллов
Слева мы видим, что размер кристалла на порядок больше. Именно этот светодиод был приобретен на Aliexpress. Тот образец, что был приобретен в офф-лайн магазине явно 1 Вт, не смотря на то, что продавался с заявленной мощностью — 3Вт. В принципе, мне хватило одного взгляда на кристалл через микроскоп и понять где какой диод будет. Но для себя любимого я проверил свечение по первому способу (увеличение тока) и визуальный вывод был подтвержден.
Ну вот и все. Вот такими нехитрыми способами теперь Вы можете спокойно проверить, сравнить и различить 3 Вт мощные светодиоды от 1 Вт. Но, чтобы этим не заниматься постоянно, стоит приобретать светодиодную продукцию в проверенных магазинах и площадках.