Ihads.ru

Все про недвижимость
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Количество теплоты; формула, уравнения и расчеты

Количество теплоты — формула, уравнения и расчеты

В словесной формулировке звучит следующим образом[2]:

Мощность тепла, выделяемого в единице объёма среды при протекании постоянного электрического тока, равна произведению плотности электрического тока на величину напряженности электрического поля.

Математически может быть выражен в следующей форме:

где w — мощность выделения тепла в единице объёма, j → >> — плотность электрического тока, E → >> — напряжённость электрического поля, σ

— проводимость среды, а точкой обозначено скалярное произведение.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах[3]:

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивления участка.

В интегральной форме этот закон имеет вид

где d Q — количество теплоты, выделяемое за промежуток времени d t , I — сила тока, R — сопротивление, Q — полное количество теплоты, выделенное за промежуток времени от t 1 > до t 2 > . В случае постоянных силы тока и сопротивления:

Применяя закон Ома, можно получить следующие эквивалентные формулы:

В качестве внесистемной единицы измерения количества теплоты используется калория. Одна калория равна количеству теплоты, которое следует передать воде массой один килограмм, чтобы нагреть ее на один градус Цельсия. Соотношение между джоулем и калорией следующее:

[1калapprox 4,2 Дж.]

Если говорить точнее, то различают:

  • Международную калорию, она равна: [1 кал=4,1868 Дж;;]
  • термохимическую калорию: [1 кал=4,184 Дж;;]
  • 15-градусная калория, используемая для термических измерений: [1 кал=4,1855 Дж;;]

Часто калории используют с десятичными приставками, такими как: ккал (килокалория) $1ккал=<10>^3кал$; Мкал (мегакалория) 1Мкал =$<10>^6кал$; Гкал (гигакалория) 1 Гкал=$<10>^9кал$.

Читайте так же:
Тепловое действие тока в примерах

Иногда килокалорию называют большой калорией или килограмм-калорией.

Закон Ома для неоднородного участка

Простой закон Ома справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.

Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.

На рис. 3 и источник тока. ЭДС источника равна , его внутреннее сопротивление считаем равным нулю (усли внутреннее сопротивление источника равно , можно просто заменить резистор на резистор ).

Рис. 3. ЭДС «помогает» току:

Сила тока на участке равна , ток течёт от точки к точке . Этот ток не обязательно вызван одним лишь источником . Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток является результатом совокупного действия всех источников, имеющихся в цепи.

Пусть потенциалы точек и равны соответственно и . Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.

Напряжение на нашем участке равно: . За время через участок проходит заряд , при этом стационарное электрическое поле совершает работу:

Кроме того, положительную работу совершает источник тока (ведь заряд прошёл сквозь него!):

Сила тока постоянна, поэтому суммарная работа по продвижению заряда , совершаемая на участке стационарным элетрическим полем и сторонними силами источника, целиком превращается в тепло: .

Подставляем сюда выражения для , и закон Джоуля–Ленца:

Читайте так же:
Реле тока электротепловое ртт 311 160 а

Сокращая на , получаем закон Ома для неоднородного участка цепи:

или, что то же самое:

Обратите внимание: перед стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки к точке .

Отметим два следствия выведенных формул (6) и (7) .

1. Если участок однородный, то . Тогда из формулы (6) получаем — закон Ома для однородного участка цепи.

2. Предположим, что источник тока обладает внутренним сопротивлением . Это, как мы уже упоминали, равносильно замене на :

Теперь замкнём наш участок, соединив точки и . Получим рассмотренную выше полную цепь. При этом окажется, что и предыдущая формула превратится в закон Ома для полной цепи:

Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.

Может быть и другой случай подключения, когда источник «мешает» току идти по участку. Такая ситуация изображена на рис. 4 . Здесь ток, идущий от к , направлен против действия сторонних сил источника.

Рис. 4. ЭДС «мешает» току:

Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против . Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!

Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:

Тогда закон Ома для неоднородного участка примет вид:

где по-прежнему — напряжение на участке.

Читайте так же:
Комплект теплоотражательной одежды ток 200

Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:

Ток при этом течёт от точки к точке . Если направление тока совпадает с направлением сторонних сил, то перед ставится «плюс»; если же эти направления противоположны, то ставится «минус».

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector